智慧城市涉及城市運行的方方面面,為老百姓在醫、食、住、行、游、教等方面提供更加便捷的服務。在建設中,重點關注老百姓急需的智慧民生領域,如智慧交通、智慧醫療、智慧旅游、智慧社區、智慧環保等。同時,結合各個城市自身發展定位和區域特色,明確、細化智慧城市建設的規劃布局,統籌建設重點和特色項目。
智慧城市主要內容包括:對智慧城市項目涉及的信息服務、交通、醫療、旅游、社區、環保等方面進行需求調研分析,并進行相應的系統設計;城市公共信息資源數據中心,包括公共基礎數據、公共業務數據、公共服務數據等;城市運營管理平臺,包括綜合服務管理、IT運維管理、數據安全管理等;城市公共信息應用服務平臺,包括信息服務、智慧交通、智慧醫療、智慧旅游、智慧社區、智慧環保等。
隨著國內信息化系統的不斷建設,相關的數據量級已從TB級別躍升到PB級別,形成了名副其實的大數據。但是這些以往的海量數據大多只存在于垂直業務和單一應用中,數據過于分散且信息內容單一,而且缺乏有效的數據分析方法,數據處理效率低下,致使海量的數據無法被共享利用,嚴重制約信息化建設整體發展的速度。因此,需要通過信息化手段對已有各系統的海量數據進行整合、分類、歸納,搭建數據倉庫,實現有效的數據存儲與管理。
通過利用各種分析方法,對已有數據進行統計和分析,提供歷史數據的分析結果。幫助決策者能快速有效的從大量資料中,獲得有價值的分析結果,做出科學的決策,幫助建構商業智能(BI)。
近年來,數據挖掘理論及其技術研究和開發取得了較為快速的發展,其在各個領域應用有著非常廣闊的空間和潛力。數據挖掘成為解決數據處理難題的有效途徑,主要依賴兩項技術:一是對某個領域各部門產生的各種業務數據進行整理和集成,搭建支持決策的數據分析環境,即數據倉庫;二是發現隱藏在各種監測數據之中的有用知識,即數據挖掘。
作為一個多學科交叉的領域,數據挖掘可以用多種方式定義,例如“從數據中挖掘知識”、“知識挖掘”等。許多人把數據挖掘視為另一個流行術語——數據中的知識發現(Knowledge Discovery in Database,KDD)的同義詞。由以下步驟組成:(1)數據清理:清除噪聲和刪除不一致數據;(2)數據集成:多種數據源可以組合在一起;(3)數據選擇:從數據庫中提取與分析任務相關數據;(4)數據變換:通過匯總或聚集操作,把數據變換和統一成適合挖掘的形式;(5)數據挖掘:基本步驟,使用智能方法提取數據模式;(6)模式評估:根據某種興趣度量,識別代表知識的真正有趣模式;(7)知識表示:使用可視化和知識表示技術,向用戶提供挖掘的知識。
基于沃達德大數據平臺,通過對海量數據采集、處理、存儲、分析和數據挖掘,根據數據的特性,采用合適的可視化方式,將數據直觀地展現出來,以幫助人們認識數據、理解數據,同時找出包含在海量數據中的規律或者信息,預測未來發展趨勢,進行智能化決策分析,使得數據資產成為核心競爭力。