智慧公安以大數據、云計算、人工智能、物聯網和移動互聯網技術為支撐,以“打、防、管、控”為目的,構建公安智慧大數據平臺,實現警務信息融合、共享,實現公安信息數字化、網絡化和智能化。
一、社會治安管理防控模型
建立社會治安分析評估、警情動態監測預警以及人、車、物、場所一體管控等機制。包括:
重點人管控,包括:重點人員活動態勢、重點人員管理、布控管理、預警處理、重點人分析模型、重點人員檔案。
群體管控,包括:聚集訪研判、群體聚集分析。
二、偵查實戰模型
將各偵查業務警種力量、資源、手段、線索統一接入大數據平臺,建立多資源無縫對接、多手段同步上案、多警種聯合作戰,包括:
案件研判/團伙挖掘,包括:警情案件分析、要素關聯分析、研判模型、團伙發現。
隨著國內信息化系統的不斷建設,相關的數據量級已從TB級別躍升到PB級別,形成了名副其實的大數據。但是這些以往的海量數據大多只存在于垂直業務和單一應用中,數據過于分散且信息內容單一,而且缺乏有效的數據分析方法,數據處理效率低下,致使海量的數據無法被共享利用,嚴重制約信息化建設整體發展的速度。因此,需要通過信息化手段對已有各系統的海量數據進行整合、分類、歸納,搭建數據倉庫,實現有效的數據存儲與管理。
利用各種分析方法,對已有數據進行統計和分析,提供歷史數據的分析結果。幫助決策者能快速有效的從大量資料中,獲得有價值的分析結果,做出科學的決策,幫助建構商業智能(BI)。
近年來,數據挖掘理論及其技術研究和開發取得了較為快速的發展,其在各個領域應用有著非常廣闊的空間和潛力。數據挖掘成為解決數據處理難題的有效途徑,主要依賴兩項技術:一是對某個領域各部門產生的各種業務數據進行整理和集成,搭建支持決策的數據分析環境,即數據倉庫;二是發現隱藏在各種監測數據之中的有用知識,即數據挖掘。
作為一個多學科交叉的領域,數據挖掘可以用多種方式定義,例如“從數據中挖掘知識”、“知識挖掘”等。許多人把數據挖掘視為另一個流行術語——數據中的知識發現(Knowledge Discovery in Database,KDD)的同義詞。由以下步驟組成:(1)數據清理:清除噪聲和刪除不一致數據;(2)數據集成:多種數據源可以組合在一起;(3)數據選擇:從數據庫中提取與分析任務相關數據;(4)數據變換:通過匯總或聚集操作,把數據變換和統一成適合挖掘的形式;(5)數據挖掘:基本步驟,使用智能方法提取數據模式;(6)模式評估:根據某種興趣度量,識別代表知識的真正有趣模式;(7)知識表示:使用可視化和知識表示技術,向用戶提供挖掘的知識。
基于沃達德大數據平臺,通過對海量數據采集、處理、存儲、分析和數據挖掘,根據數據的特性,采用合適的可視化方式,將數據直觀地展現出來,以幫助人們認識數據、理解數據,同時找出包含在海量數據中的規律或者信息,預測未來發展趨勢,進行智能化決策分析,使得數據資產成為核心競爭力。