智慧公安以大數據、云計算、人工智能、物聯網和移動互聯網技術為支撐,以“打、防、管、控”為目的,綜合研判為核心,共享信息數據資源,融合業務功能,構建公安智慧大數據平臺,實現公安信息數字化、網絡化和智能化。智慧公安大數據平臺,全面感知、綜合分析、整合公安業務資源和社會化信息資源,提供高效的警務管理手段,拓展便民服務空間。
智慧公安圖像融合大數據實戰應用平臺,包括數據中心、研判工具、維穩系統、打擊系統、智慧內保系統、疫情防控系統、大數據反詐平臺、智慧大屏。數據中心建設包括數據接入、數據治理、數據組織和數據服務;研判工具包括一鍵搜、模型輕應用;維穩子系統包括重點人管控、群體管控;打擊子系統包括案件研判、團伙挖掘;智慧內保系統包括工作臺、綜合查詢、單位管理、工作態勢、安全研判、異常預警;疫情防控系統包括外防輸入、密接流調;大數據反詐平臺包括反詐警情、被騙對象分析;智慧大屏包括治安態勢、重點區域、風險管控。
國內及全球信息系統經過多年的運行,沉淀了海量的視頻、圖片、圖表、文字等相關數據。這些數據具有量大、高維、多源、異構、動態、時效、連續、無限等特點。由于種種原因這些數據大多只存在于垂直業務和單一應用中,數據過于分散,并未被充分整合加以利用和挖掘。隨著信息化系統的不斷建設,相關的數據量級已從TB級別躍升到PB級別,足以支撐起行業應用大數據來解決相關問題。經過多年的發展也積累了大量的大數據處理分析的應用需求,具備基于海量數據進行相應數據挖掘的基礎。
數據是一種寶貴的資源。利用新技術新方法挖掘現有數據的價值,找到數據間的關聯關系,提高基礎數據的利用率,并預測未來趨勢及行為,是國內面臨的迫切問題。一批新興的數據處理、挖掘與分析技術不斷涌現,使分析處理海量數據變得更加容易、更加便捷。
通過建設大數據基礎平臺,對已有海量數據進行整合、挖掘和分析,由傳統的經驗決策模式逐步轉變為數據決策模式,可以進一步提升國內管理水平以及決策效率,并充分挖掘數據資產的重要價值。大數據基礎平臺采用模塊化結構,模塊高內聚、松耦合,應滿足高可靠、實時響應快、安全性好、開放性好,系統應易于操作、易于維護、可擴展性好。
大數據平臺進行數據采集時通常要面對數據結構、業務規則、技術特性(網絡、安全、性能約束)等方面的綜合挑戰。如果數據源和大數據平臺處于相同的網絡環境,具有類似的數據結構和編碼映射,可以通過工具配置或腳本進行采集,如使用Sqoop。當需要面對和對接第三方的數據生產系統,需要遵循對方的抽取協議,以及跨網段的數據訪問,從而需要對采集應用進行一定程度上的定制,可以使用Java NIO、Netty或Mina。
基于沃達德大數據平臺,通過對海量數據采集、處理、存儲、分析和數據挖掘,根據數據的特性,采用合適的可視化方式,將數據直觀地展現出來,以幫助人們認識數據、理解數據,同時找出包含在海量數據中的規律或者信息,預測未來發展趨勢,進行智能化決策分析,使得數據資產成為核心競爭力。