智慧內保是社會治安防控體系建設的重要內容,匯聚單位標準地址、從業人員、保衛人員等基礎信息,對重點單位和要害部位的人員,結合空間數據,建立人員全息檔案,進行警情態勢預測、高危人群篩查、串并案等主題和多維度分析研判,實現多維度預警。
智慧內保在平安城市建設中起著舉足輕重的作用,包括匯聚內保單位基礎信息,建設信息資源庫,為數據交換共享提供服務支撐;實現內保輔助決策,展示單位內保工作形勢,提供參考和數據支撐;實現內保監測預警功能,采用大數據挖掘、人工智能等技術進行預警監測。
智慧內保安全監管大數據平臺,包括數據中心、智慧內保安全監管系統、企業采集系統、智慧內保警務通APP。
數據中心
數據中心提供對海量數據的處理、存儲、計算、分析、數據挖掘和數據服務。
數據中心建設包括以下內容:
數據接入,包括:元數據管理、數據定義、數據讀取、數據處理;數據來源包括視頻圖像、外部數據、內部警務數據。
數據治理,包括:資源編目、數據血緣管理、標簽管理、數據質量管理、數據運維管理。
數據組織,建立基礎數據庫、主數據庫、關聯數據庫、專題數據庫、主題數據庫。
數據服務,包括:數據服務接口、API網關。
基于沃達德大數據平臺,通過對海量數據采集、處理、存儲、分析和數據挖掘,根據數據的特性,采用合適的可視化方式,將數據直觀地展現出來,以幫助人們認識數據、理解數據,同時找出包含在海量數據中的規律或者信息,預測未來發展趨勢,進行智能化決策分析,使得數據資產成為核心競爭力。
信息系統經過多年的運行,沉淀了海量的視頻、圖片、圖表、文字等相關數據。這些數據具有量大、高維、多源、異構、動態、時效、連續、無限等特點。由于種種原因這些數據大多只存在于垂直業務和單一應用中,數據過于分散,并未被充分整合加以利用和挖掘。隨著信息化系統的不斷建設,相關的數據量級已從TB級別躍升到PB級別,足以支撐起行業應用大數據來解決相關問題。經過多年的發展也積累了大量的大數據處理分析的應用需求,具備基于海量數據進行相應數據挖掘的基礎。
數據是一種寶貴的資源。利用新技術新方法挖掘現有數據的價值,找到數據間的關聯關系,提高基礎數據的利用率,并預測未來趨勢及行為,是面臨的迫切問題。一批新興的數據處理、挖掘與分析技術不斷涌現,使分析處理海量數據變得更加容易、更加便捷。
通過建設大數據基礎平臺,對已有海量數據進行整合、挖掘和分析,由傳統的經驗決策模式逐步轉變為數據決策模式,可以進一步提升管理水平以及決策效率,并充分挖掘數據資產的重要價值。大數據基礎平臺采用模塊化結構,模塊高內聚、松耦合,應滿足高可靠、實時響應快、安全性好、開放性好,系統應易于操作、易于維護、可擴展性好。
大數據平臺進行數據采集時通常要面對數據結構、業務規則、技術特性(網絡、安全、性能約束)等方面的綜合挑戰。如果數據源和大數據平臺處于相同的網絡環境,具有類似的數據結構和編碼映射,可以通過工具配置或腳本進行采集,如使用Sqoop。當需要面對和對接第三方的數據生產系統,需要遵循對方的抽取協議,以及跨網段的數據訪問,從而需要對采集應用進行一定程度上的定制,可以使用Java NIO、Netty或Mina。
基于沃達德大數據平臺,通過對海量數據采集、處理、存儲、分析和數據挖掘,根據數據的特性,采用合適的可視化方式,將數據直觀地展現出來,以幫助人們認識數據、理解數據,同時找出包含在海量數據中的規律或者信息,預測未來發展趨勢,進行智能化決策分析,使得數據資產成為核心競爭力。